Reliability of DC power grids under uncertainty: a large deviations approach

نویسندگان

  • Tommaso Nesti
  • Jayakrishnan Nair
  • Bert Zwart
چکیده

The advent of renewable energy has huge implications for the design and control of power grids. Due to increasing supply-side uncertainty, traditional reliability constraints such as strict bounds on current, voltage and temperature in a transmission line have to be replaced by chance constraints which are computationally hard. In this paper we use large deviations techniques to study the probability of current and temperature overloads in a DC network with stochastic power injections, and develop corresponding safe capacity regions. In particular, we characterize the set of admissible power injections such that the probability of overloading of any line over a given time interval stays below a fixed target. We show how enforcing (stochastic) constraints on temperature, rather than on current, results in a less conservative approach and can thus lead to capacity gains in power grids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC) grids based on an optimal power flow (OPF) procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage ...

متن کامل

A Markovian Approach Applied to Reliability Modeling of Bidirectional DC-DC Converters Used in PHEVs and Smart Grids

In this paper, a stochastic approach is proposed for reliability assessment of bidirectional DC-DC converters, including the fault-tolerant ones. This type of converters can be used in a smart DC grid, feeding DC loads such as home appliances and plug-in hybrid electric vehicles (PHEVs). The reliability of bidirectional DC-DC converters is of such an importance, due to the key role of the expec...

متن کامل

A New Power Management Approach for PV-Wind-Fuel Cell Hybrid System in Hybrid AC-DC Microgrid Configuration

The hybrid AC-DC microgrid (HMG) architecture has the merits of both DC and AC coupled structures. Microgrids are subject to intermittence when the renewable sources are used. In the HMG, since power fluctuations occur on both subgrids due to varying load and unpredictable power generation from renewable sources, proper voltage and frequency regulation is the critical issue. This article propos...

متن کامل

Analysis of Reliability Indices in Next Generation Microgrids Under Uncertainties of Load and Renewable Power Production

In this paper, Multi-Microgrids (MMG) are considered as future smart distribution grids, in which small scale energy resources (SSER) are main power generation units with small scales. Optimal operation of microgrids in defined intervals is carried out to achieve economic conditions in distribution systems. The defined operating problem is optimized using a heuristic algorithm considering uncer...

متن کامل

Robust Agent Based Distribution System Restoration with Uncertainty in Loads in Smart Grids

This paper presents a comprehensive robust distributed intelligent control for optimum self-healing activities in smart distribution systems considering the uncertainty in loads. The presented agent based framework obviates the requirements for a central control method and improves the reliability of the self-healing mechanism. Agents possess three characteristics including local views, decentr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016